Fluorescently tagged cultured HeLa cells

HeLa, the VIP of cell lines

By  Gesa Junge, PhD

A month ago, The Immortal Life of Henrietta Lacks was released on HBO, an adaptation of Rebecca Skloot’s 2010 book of the same title. The book, and the movie, tell the story of Henrietta Lacks, the woman behind the first cell line ever generated, the famous HeLa cell line. From a biologist’s standpoint, this is a really unique thing, as we don’t usually know who is behind the cell lines we grow in the lab. Which, incidentally, is at the centre of the controversy around HeLa cells. HeLa was the first cell line ever made over 60 years ago and today a PubMed search for “HeLa” return 93274 search results.

Cell lines are an integral part to research in many fields, and these days there are probably thousands of cell lines. Usually, they are generated from patient samples which are immortalised and then can be grown in dishes, put under the microscope, frozen down, thawed and revived, have their DNA sequenced, their protein levels measured, be genetically modified, treated with drugs, and generally make biomedical research possible. As a general rule, work with cancer cell lines is an easy and cheap way to investigate biological concepts, test drugs and validate methods, mainly because cell lines are cheap compared to animal research, readily available, easy to grow, and there are few concerns around ethics and informed consent. This is because although they originate from patients, the cell lines are not considered living beings in the sense that they have feelings and lives and rights; they are for the most part considered research tools. This is an easy argument to make, as almost all cell lines are immortalised and therefore different from the original tissues patients donated, and most importantly they are anonymous, so that any data generated cannot be related back to the person.

But this is exactly what did not happen with HeLa cells. Henrietta Lack’s cells were taken without her knowledge nor consent after she was treated for cervical cancer at Johns Hopkins in 1951. At this point, nobody had managed to grow cells outside the human body, so when Henrietta Lack’s cells started to divide and grow, the researchers were excited, and yet nobody ever told her, or her family. Henrietta Lacks died of her cancer later that year, but her cells survived. For more on this, there is a great Radiolab episode that features interviews with the scientists, as well as Rebecca Skloot and Henrietta Lack’s youngest daughter Deborah Lacks Pullum.

In the 1970s, some researchers did reach out to the Lacks family, not because of ethical concerns or gratitude, but to request blood samples. This naturally led to confusion amongst family members around how Henrietta Lack’s cells could be alive, and be used in labs everywhere, even go to space, while Henrietta herself had been dead for twenty years. Nobody had told them, let alone explained the concept of cell lines to them.

The lack of consent and information are one side, but in addition to being an invaluable research tool, cell lines are also big business: The global market for cell lines development (which includes cell lines and the media they grow in, and other reagents) is worth around 3 billion dollars, and it’s growing fast. There are companies that specialise in making cell lines of certain genotypes that are sold for hundreds of dollars, and different cell types need different growth media and additives in order to grow. This adds a dimension of financial interest, and whether the family should share in the profit derived from research involving HeLa cells.

We have a lot to be grateful for to HeLa cells, and not just biomedical advances. The history of HeLa brought up a plethora of ethical issues around privacy, information, communication and consent that arguably were overdue for discussion. Innovation usually outruns ethics, but while nowadays informed consent is standard for all research involving humans, and patient data is anonymised (or at least pseudonomised and kept confidential), there were no such rules in 1951. There was also apparently no attempt to explain scientific concept and research to non-scientists.

And clearly we still have not fully grasped the issues at hand, as in 2013 researchers sequenced the HeLa cell genome - and published it. Again, without the family’s consent. The main argument in defence of publishing the HeLa genome was that the cell line was too different from the original cells to provide any information on Henrietta Lack’s living relatives. There may some truth in that; cell lines change a lot over time, but even after all these years there will still be information about Henrietta Lack’s and her family in there, and genetic information is still personal and should be kept private.

HeLa cells have gotten around to research labs around the world and even gone to space and on deep sea dives. And they are now even contaminating other cell lines (which could perhaps be interpreted as just karma). Sadly, the spotlight on Henrietta Lack’s life has sparked arguments amongst the family members around the use and distribution of profits and benefits from the book and movie, and the portrayal of Henrietta Lack’s in the story. Johns Hopkins say they have no rights to the cell line, and have not profited from them, and they have established symposiums, scholarships and awards in Henrietta Lack’s honour.

The NIH has established the HeLa Genome Data Access Working Group, which includes members of Henrietta Lack’s family. Any researcher wanting to use the HeLa cell genome in their research has to request the data from this committee, and explain their research plans, and any potential commercialisation. The data may only be used in biomedical research, not ancestry research, and no researcher is allowed to contact the Lacks family directly.


Can we reprogram adult cells into eggs?

 

By Sophie Balmer, PhD

 

Oogenesis is the female process necessary to create eggs ready for fertilization. Reproducing these keys steps in culture constitutes a major advance in developmental biology. Last week, a scientific group from Japan amazingly succeeded and published their results in the journal Nature. They replicated the entire cycle of oogenesis in vitro starting from adult skin cells. Upon fertilization of these in vitro eggs and transfer in adult females, they even obtained pups that grew normally to adulthood providing new platforms for the study of developmental biology.

 

Gamete precursor cells first appear early during embryonic development and are called primordial germ cells. These precursors then migrate to the gonads where they will remodel their genome via two rounds of meiosis to produce either mature oocytes or sperm depending on the sex of the embryo. For oocyte maturation, these two cycles occur at different times: the first one before or shortly after birth and the second one at puberty. The second round of meiosis is incomplete and the oocytes remain blocked in metaphase until fertilization by male gametes. This final event initiates the process of embryonic development, therefore closing the cycle of life.

 

Up until last week, parts of this life cycle were reproducible in culture. For years, scientists have known how to collect and culture embryos, fertilize them and transfer them to adult females to initiate gestation. This process called in vitro fertilization (IVF) has successfully been applied to humans and has revolutionized the life of millions of individuals suffering specific infertility issues and allowing them to have babies. However only a subset of infertility problems can be solved by IVF.

Additionally, in 2012, the same Japanese group recreated another part of the female gamete development: Dr. Hayashi and colleagues generated mouse primordial germ cells in vitro that once transplanted in female embryos recapitulated oogenesis. Both embryonic stem (ES) cells or induced pluripotent stem (iPS) cells were used for such procedure. ES cells can be derived from embryos before their implantation in the uterus and iPS cells are derived by reprogramming of adult cells. Finally, a couple of months ago, another group also reported being able to transform primordial germ cells collected from mouse embryos into mature oocytes.

 

However, replicating the full cycle of oogenesis from pluripotent cell lines in a single procedure constitutes an unprecedented discovery. To achieve this, they proceeded in different steps: first, they produced primordial germ cells in vitro from either skin cells (following their de-differentiation into iPS cells) or directly from ES cells. Second, they produced primary oocytes in a specific in vitro environment called "reconstituted ovaries". Third, they induced maturation of oocyte up until their arrest in meiosis II. This process took approximately the same time as it would take in the female mouse and it is impressive to see how the in vivo and in vitro oocytes are indistinguishable. Of course, this culture system also produced a lot of non-viable eggs and only few make it through the whole process. For example, during the first step of directed differentiation, over half of the oocytes contain chromosome mispairing during meiosis I, which is about 10 times more than in vivo. Additionally, only 30% complete meiosis I as shown by the exclusion of the 1st polar body. However, analysis of other parameters such as the methylation pattern of several genes showed that maternal imprinting was almost complete and that most of the mature oocytes had normal number of chromosomes. Transcription profiling also showed very high similarities between in vitro and in vivo oocytes.

The in vitro oocytes were then used for IVF and transplanted into mouse. Amazingly, some of them developed into pups that were viable, grew up to be fertile and had normal life expectancy without apparent abnormalities. However, the efficiency of such technique is very low as only 3.5% of embryos transplanted were born (compare to over 60% in the case of routine IVF procedures). Embryos that did not go through the end of the pregnancy showed delayed development at various stages, highlighting that there are probably conditions that could be improved for the oocytes to lead to more viable embryos.

Looking at the entire process, the rate of success to obtain eggs ready for transplant is around 7-14% depending on the starting cell line population. Considering how much time these cells spend in culture, this rate seems reasonably good. However, as mentioned above only few develop to birth. Nonetheless, this work constitutes major advancement in the field of developmental biology and will allow researchers to look in greater detail at the entire process of oogenesis and fertilization without worrying about the number of animals needed. We can also expect that, as with every protocol, it will be fine-tuned in the near future. It is already very impressive that the protocol led to viable pups from 6 different cell line populations.

 

Besides its potential for increasing knowledge in the oogenesis process, the impact of such research might reach beyond the scope of developmental biology. Not surprisingly, these results came with their share of concerns that soon this protocol would be used for humans. How amazing would it be for women who cannot use IVF to use their skin cells and allow them to have babies? Years ago, when IVF was introduced to the world, most people thought that “test-tube” babies were a bad idea. Today, it is used as a routine treatment for infertility problems. However, there is a humongous difference between extracting male and female gametes and engineering them. I do not believe that this protocol will be used on humans any time soon because it requires too many manipulations that we still have no idea how to control. Nonetheless, in theory, this possibility could be attractive. Also, for the most sceptic ones, one of the major reason why this protocol is not adaptable to human right now is that we cannot generate human “reconstituted ovaries”. This step is key for mouse oocytes to grow in vitro and necessitate to collect the gonadal somatic cells in embryos which is impossible in humans. So, until another research group manages to produce somatic gonadal cells from iPS cells, no need to start freaking out ;-)

 

 


CRISPR gene editing in human embryos

Engineering Babies One Crispr at a Time

 

By Sophie Balmer, PhD

Over the past few weeks, the scientific community has been overwhelmed with major advances in human embryonic research. Whether researchers report for the second time the use of Crispr to edit the human germline or extend the conditions of in vitro culture of human embryos (also here), these issues have been all over the news. However, as all topics can not be raised in only one post, therefore, I will focus on genome editing studies.

 

About a year ago, one research group in China reported the first genome editing of human embryos using Crispr technology. Although these embryos were not viable due to one additional copy of each chromosome, this study quickly became highly controversial and raised strong concerns. The public and scientific communities questioned whether editing the human germline for therapeutic benefits was legitimate, leading to numerous ethical discussions. A few of weeks ago, a second study reported genome editing of embryos reinforcing the debate around this issue. Additionally, several research proposal involving genomic modification of healthy human embryos’ DNA have been validated recently in other countries. In this post, I want to address several questions. What are the possible advances or consequences of such work? What is the current legislation on human genome editing worldwide? Are these studies as alarming as what is written in some newspaper articles?

 

The emergence of the Crispr technology a few years ago has revolutionized the way scientists work since this method greatly improves the efficiency of DNA alteration of model organisms. However, this powerful tool has also raised many concerns, notably on the possibility to easily tweak the human genome and generate modified embryos.

In the eyes of the general public, this kind of experiment resonates with science fiction books or movies. Because of the high potential of this technique, it is crucial to inform everyone correctly to avoid clichés. Recently, one of my favorite comedian and television host John Oliver depicted in a very bright and amusing way how small scientific advances are sometimes presented in the media. Although the examples he uses are dramatic, every scientific breakthrough gets its share of overselling to the public. In the case of gene-editing of human embryos, pretending we are about to use eugenics principles to engineer babies and their descendants with beneficial genes is pure fiction. However, to prevent any potential malpractice from happening, clear ethical discussions and regulations need to be established and then explained to the public to prevent misunderstanding of these issues.

Within the scientific community, last year’s results triggered the need for new discussions and regulations on human cloning. Modifying the genome of human embryos involves modifying the germline as well, leading eventually to the transmission of the genetic alteration to future generations. However, the consequences of such transmission are unknown. Potentially, this could resolve a number of congenital genetic diseases for the individual him/herself and be used for gene therapy but would result in generations of genetically modified humans.

 

Because of cultural and ethical differences between countries, the legislation (if there is any) around working with human embryos or cells derived from human embryos (hESC for human embryonic stem cells) is variable. International ethical committees have only been able to establish guidelines as instituting international laws on human cloning is impossible. Ultimately, each country is responsible for enforcing these rules. Most countries and international ethics committees agree on a ban on reproductive and therapeutic human cloning. Moreover, following last year published experiments, a summit held in December 2015 gathered experts from all around the world. The consortium concluded that gene-editing of embryos used to establish pregnancy should not be performed (for now) and to follow up on all-related issues, new sets of guidelines are coming out imminently.

 

Still, it seems difficult to get an idea of the consensus depending on the countries in which scientists perform experiments. There is range of possibilities when working with human samples: some countries completely prohibit any manipulation of human embryos or hESC while others authorize genetic modification of the embryo for research purposes only under specific conditions. In between several nations authorize research exclusively on already derived lines of hESC and others authorize derivation of hESC but no manipulation of the embryos themselves.

Besides these general rules and as of today, three countries have approved proposals for gene-editing of human embryos: China, the UK and Sweden. Research proposals in both European countries have authorized Crispr targeting of specific genes in healthy human embryos to assess the function of these genes during early human development. However, these embryos can not be used for in vitro fertilization (IVF) and have to be destroyed at the end of the study. The purpose of these studies would be to confirm what has been described in hESC and in mammalian model systems and contribute to our knowledge of human development.

 

On the other hand, both published studies from China focused on Crispr targeting towards clinical therapies of an incurable blood disease or HIV. The overall purpose of such projects is to test the use of the Crispr technology for gene therapy. Although rendering embryos immune to several diseases using Crispr is an attractive possibility, it seems more urgent to probe the validity of the technique in humans and assess whether the mechanisms of human embryonic development are similar to what has been hypothesized. Gene therapies have already been successfully attempted in humans using other techniques to modify the genome. Yet, the modifications were targeted towards specific cells in already-born individuals. Again, modifying the genome of embryos implies that the mutation will be inherited in future generations and is in a large part the reason of this debate. Moreover, Crispr targeting still leads to unspecific modification of the genome, although very promising results show that newly engineered cas9 could lead to very specific targeting. The consequences of such off-target modification are unknown and could be disastrous for the following generations.

 

Overall, no research proposal dares to consider genetically modified embryos to establish pregnancy but as research moves faster, increasing demand for ethical discussion and regulations are brought forward. As more studies come out, it will be interesting to follow the evolution of this debate. Additionally, informing clearly the population of the possibilities and outcomes of ongoing projects should be a priority so that they can give an informed consent towards such research. In any case, a clear boundary needs to be established between selecting the fittest embryo by pre-implantation genetic diagnosis, which is routinely performed for IVF and playing the sorcerer’s apprentice with human embryo’s


Taking Genome Editing out of the Lab: Cause for Concern?

By Rebecca Delker, PhD

Genome editing – the controlled introduction of modifications to the genome sequence – has existed for a number of years as a valuable tool to manipulate and study gene function in the lab; however, because of inefficiencies intrinsic to the methods used, the technique has, until now, been limited in scope. The advent of CRISPR/Cas9 genome editing technology, a versatile, efficient and affordable technique, not only revolutionized basic cell biology research but has opened the real possibility of the use of genome editing as a therapy in the clinical setting and as a defense against pests destructive to the environment and human health.

 

CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats – when teamed up with the nuclease, Cas9, to form CRISPR/Cas9 serves as a primitive immune system for bacteria and archaea, able to tailor a specific response to an invading virus. During viral invasion, fragments of the invader’s foreign genome are incorporated between the CRISPR repeats, forever encoding a memory of the attack in the bacterial genome. Upon future attack by the same virus, these memories can be called upon by transcribing the fragments to RNA, which, through Watson-Crick base-pairing, guide Cas9 to the viral genome, targeting it for destruction by induced double strand breaks (DSBs).

 

While an amazing and inspiring piece of biology in its own right, the fame of CRISPR/Cas9 did not skyrocket until the discovery that this RNA/nuclease team could be programmed to target specific sequences and induce DSBs in the complex genomes of all species tested. Of course the coolness factor of CRISPR technology does not end with the induction of DSBs but rather the use of these breaks to modify the genome. Taking advantage of a cell’s natural DNA repair machinery, CRISPR-induced breaks can be repaired by re-gluing the broken ends in a manner that results in the insertion or deletion of nucleotides – indels, for short – that disrupt gene function. More interesting for genome editing, though, DSBs can also serve as a portal for the insertion of man-made DNA fragments in a site-specific fashion, allowing the insertion of foreign genes or replacement of faulty genes.

 

CRISPR/Cas9 is not the first technology developed to precisely edit genomes. The DNA-binding (and cutting) engineered proteins, TALENS and Zinc Finger Nuclease (ZFNs), came into focus first but, compared to the RNA-guided Cas9 nuclease, are just a bit clunky – more complex in design with lower efficiency and less affordable. Even prior to these techniques, the introduction of recombinant DNA technology in the 1970s allowed the introduction of foreign DNA into the genomes of cells and organisms. Mice could be made to glow green using a jellyfish gene before the use of nucleases – just less efficiently. Now, the efficiency of Cas9 and the general ease of use of the technology paired with the decreased costs of genome sequencing enable scientists to edit the genome of just about any species, calling to mind the plots of numerous sci-fi films.

 

While it is unlikely that we will find ourselves in a GATTACA-like situation anytime soon, the potential for the application of CRISPR genome editing to human genomes has sparked conversation in the scientific literature and popular press. Though genome modification of somatic cells (regulators of body function) is generally accepted as an enhanced version of gene therapy, editing of germline cells (carriers of hereditary information) has garnered more attention because of the inheritance of the engineered modifications by generations to come. Many people, including some scientists, view this as a line that should never be crossed and argue that there is a slippery slope between editing disease-causing mutations and creating designer babies. Attempts by a group at Sun Yat-sen University in China to test the use of CRISPR in human embryos was referred to by many as irresponsible and their paper was rejected from top journals including Nature and Science. It should be noted, however, that this uproar occurred despite the fact that the Chinese scientists were working with non-viable embryos in excess from in vitro fertilization and with approval by the appropriate regulatory organizations.

 

Modifying human beings is unnatural; and, as such, seems to poke and prod at our sense of morality, eliciting the knee-jerk response of no. But, designer babies aside, how unethical is it to target genes to prevent disease – the ultimate preventative medicine, if you will? It is helpful to address this question in a broader context. All medical interventions – antibiotics, vaccinations, surgeries – are unnatural, but (generally) their ethics are not questioned because of their life-saving capabilities. If we look specifically at reproductive technology, there is precedent for controversial innovation. In the 1970s when the first baby was born by in vitro fertilization (IVF), people were skeptical of scientists making test-tube babies­ in labs. Now, it is a widely accepted technique and more than 5 million babies have been born with IVF.

 

Moving the fertilization process out of the body allowed for the unique possibility to prevent the transmission of genetic diseases from parent to child. Pre-Implantation Genetic Diagnosis (PGD), the screening of eggs or embryos for genetic mutations, allows for the selection of embryos that are free of disease for implantation. More recently, the UK (although not the US) legalized mitochondrial replacement therapy – a technique that replaces faulty mitochondria of the parental egg with that of a healthy donor either prior to or post fertilization. Referred to in the press as the creation of three-parent babies because genetic material is derived from three sources, this technique aims to prevent the transmission of debilitating mitochondrial diseases from mother to child. To draw clearer parallels to germline editing, mitochondria – energy producing organelles that are the likely descendants of an endosymbiotic relationship between bacteria and eukaryotic cells – contain their own genome. Thus, although mitochondrial replacement is often treated as separate from germline editing because nuclear DNA is left untouched, the genomic content of the offspring is altered. There are, of course, naysayers who don’t think the technique should be used in humans, but largely this is not because of issues of morality; rather, their opposition is rooted in questions of safety.

 

Germline editing could be the next big development in assisted reproductive technology (ART), but, like mitochondrial replacement and all other experimental therapies, safety is of utmost concern. Most notably, the high efficiency of CRISPR/Cas9 relative to earlier technologies comes at a cost. It has been demonstrated in a number of model systems, including the human embryos targeted by the Chinese group, that in addition to the desired insertion, CRISPR results in off-target mutations that could be potentially dangerous. Further, because our understanding of many genetic diseases is limited, there remains a risk of unintended consequences due to unknown gene-environmental interactions or the interplay of the targeted gene and other patient-specific genomic variants. The voluntary moratorium on clinical applications of germline editing in human embryos suggested by David Baltimore and colleagues is fueled by these unknowns. They stress the importance of initiating conversations between scientists, bioethicists, and government agencies to develop policies to regulate the use of genome editing in the clinical setting. Contrary to suggestions by others (and here), these discussions should not impede the progress of CRISPR research outside of the clinical setting. As a model to follow, a group of UK research organizations have publically stated their support for the continuation of genome editing research in human embryos as approved by the Human Fertilisation and Embryology Authority (HFEA), the regulatory organization that oversees the ethics of such research. Already, a London-based researcher has requested permission to use CRISPR in human embryos not as a therapeutic but to provide insight into early human development.

 

Much of the ethics of taking genome editing out of the lab is, thus, intertwined with safety. It is unethical to experiment with human lives without taking every precaution to prevent harm and suffering. Genome editing technology is nowhere near the point at which it is safe to attempt germline modifications, although clinical trials are in progress testing the efficacy of ZFN-based editing of adult cells to reduce viral titers in patients with HIV. This is not to say that we will never be able to apply CRISPR editing to germline cells in a responsible and ethical manner, but it is imperative that it be subject to regulations to assure the safety of humans involved, as well as to prevent the misuse of the technology.

 

This thought process must also be extended to the application of CRISPR to non-human species, especially because it does not typically elicit the same knee-jerk response as editing human progeny. CRISPR has been used to improve the efficiency of so-called gene drives, which guarantee inheritance of inserted genes, in yeast and fruit flies; and they have been proposed for use in the eradication of malaria by targeting the carrier of disease, the Anopheles mosquito. It is becoming increasingly important to consider the morality of our actions with regard to other species, as well as the planet, when developing technologies that benefit humanity. When thinking about the use of CRISPR-based gene drives to manipulate an entire species it is of utmost importance to take into consideration unintended consequences to the ecosystem. Though the popular press has not focused much on these concerns, a handful of scientific publications have begun to address these questions, releasing suggested safety measures.

 

There is no doubt that CRISPR is a powerful technology and will become more powerful as our understanding of the system improves. As such, it is critical to discuss the social implications of using genome editing as a human therapeutic and an environmental agent. Such discussions have begun with the convention in Napa attended by leading biomedical researchers and will likely continue with similar meetings in the future. This dialogue is necessary to ensure equal access to beneficial genome-editing therapies, to develop safeguards to prevent the misuse of technology, and to make certain that the safety of humans and our planet is held in the highest regard. However, too much of the real estate in today’s press regarding CRISPR technology has been fear-oriented (for example) and we run the risk of fuelling the anti-science mentality that already plagues the nation. Thus, it is equally important to focus on the good CRISPR has done and will continue to do for biological and biomedical research.

 

We are rapidly entering a time when the genomes of individuals around the world will be sequenced completely, along with many other organisms on the planet; however, this is just the tip of the iceberg of our understanding of the complex translation of this genome into life. For over a decade we have known the complete sequence of the lab mouse, but our understanding of the cellular processes within this mouse is still growing every day. Thus, there is an important distinction to be made between knowing a DNA sequence and understanding it well enough to be able to make meaningful (and safe) modifications. CRISPR genome editing technology, as it is applied in basic biology, is helping us make this leap from knowing to understanding in order to inform the creation of remedies for diseases that impact people, animals and our planet; and it is doing so with unprecedented precision and speed.

 

We must strike a balance that enables the celebration and use of the technology to advance knowledge, while assuring that the proper regulations are in place to prevent premature use in humans and hasty release into the environment. Or, as CRISPR researcher George Church remarked: “We need to think big, but also think carefully.”

 


Neuroscience: Should We Be Worried?

 

By Celine Cammarata

By nature of focussing on that squishy, convoluted organ that the mind calls home, the field of neuroscience is prone to investigating topics, and producing data, that could be considered… personal.  Take defining what makes some of us smarter than others, decoding patterns of activity to reveal thoughts, or examining the mental effects of economic instability, for example, not to mention the controversies of working with non-human primates as is required for much higher-level cognitive research.  We must ask ourselves, then, what are the ethical considerations associated with performing such experiments?  What can we, and what should we, do with the information obtained?  How far is too far?

Such are the questions that the Presidential Commission for the Study of Bioethical Issues hopes to gain insight on, following a request from the President to investigate the ethical considerations of neuroscience research.  To do this, the Commission is turning to the public: in a requested released in January, the Commission called on individuals, groups, and organizations to submit comments on the moral issues relating to both the process and results of research in the field.  The Commission, which has used similar approaches on other topics in the past, will then incorporate this commentary into it’s overall research, toward the final goal of crafting policy advice and determining and encouraging best practices.

And, to be fair, they’re pretty good questions.  Certainly neuroscientists, like other investigators, are generally self-regulating when it comes to ethical considerations.  But the Commission’s push gives us once again the impetus to ask the perennial questions, are there some things that should not be researched?  Are some things better not to know?  While not original, nor easily answered, these questions bear repeating and consideration.

The Commission specifically requested input on several topics, including whether current codes regulating the use of human subjects are adequate for neuroscience experiments, concerns over potential implications of results and downstream effects on discrimination and concepts of moral responsibility, the proper place of neuroscience in the courtroom, and the potential moral issues associated with communication of neuroscience findings.  This last topic particularly caught my attention, for while clearly an important issue, communication is not always thought of in the light of morality.  Are researchers obligated to share some discoveries?  Are journalists being unethical when they trump up findings?  It’s certainly food for thought.

Those who want to see the committee in action can tune in to the live feed of their public meeting to discuss neuroethics, today and tomorrow in Washington D.C. and online.


Brain Bot

Mapping the Human Brain - the Challenges Faced

Sophia David

The human brain is made up of billions of neurons that communicate with each other via trillions of connections. Together, they make up a network of unimaginable intricacy. Perhaps it is not surprising then, given this complexity, that things frequently go wrong within the brain. Approximately 1 in 4 people suffer from a diagnosable mental health disorder within any given year and as many as five million Americans now live with Alzheimer’s disease.

Unfortunately, drugs to treat brain disorders have been slow to materialize. Many large pharmaceutical companies have withdrawn their research on mental health diseases due to the length of time it takes these drugs to be developed and the high failure associated with them. Essentially, to big pharma, the field is unattractive and economically not viable.

Our inability to Read more